(c++) iFFT & FFT algorithm
C++, Visual Studio, FFT, iFFT, inverse FFT, 고속 푸리에 변환, Fast Fourier Transform
inverse FFT , FFT
해당 작업은 분해능을 높이고, 노이즈를 제거하여 높은 해상도의 신호를 추출하기 위함.
##
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <string>
#include <cmath>
#include <complex>
#include "fftw3.h"
#pragma comment(lib,"libfftw3-3.lib")
#pragma comment(lib,"libfftw3f-3.lib")
#pragma comment(lib,"libfftw3l-3.lib")
const int FFT_POINT = 512; // FFT 포인트 수
std::vector<std::vector<double>> readTransposeAndReverseData(const std::string& filePath);
std::vector<std::vector<std::complex<double>>> reverseTransposeData(const std::vector<std::vector<std::complex<double>>>& data);
std::vector<std::complex<double>> combineRows(const std::vector<std::vector<std::complex<double>>>& data, int numLines);
std::vector<std::vector<double>> calculateAmplitude(const std::vector<std::vector<std::complex<double>>>& fftData);
int main()
{
std::string realFilePath = "2023-11-01 15-03-51_output_real1.log";
std::string imaginFilePath = "2023-11-01 15-03-51_output_imagin1.log";
// 디렉토리 이름 추출
std::size_t lastUnderscorePos = realFilePath.find_last_of('_');
std::string directoryName = realFilePath.substr(0, lastUnderscorePos);
std::cout << "directoryName: " << directoryName << std::endl;
// 디렉토리 생성
std::string mkdirCommand = "mkdir \"" + directoryName + "\"";
system(mkdirCommand.c_str());
std::vector<std::vector<double>> realData = readTransposeAndReverseData(realFilePath);
std::vector<std::vector<double>> imaginData = readTransposeAndReverseData(imaginFilePath);
fftw_complex* in, * out;
fftw_plan p;
in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * FFT_POINT);
out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * FFT_POINT);
p = fftw_plan_dft_1d(FFT_POINT, in, out, FFTW_BACKWARD, FFTW_ESTIMATE);
std::vector<std::vector<std::complex<double>>> fftResults; // 복소수 벡터
for (size_t i = 0; i < realData.size(); ++i) {
for (size_t j = 0; j < FFT_POINT; ++j) {
in[j][0] = realData[i][j];
in[j][1] = imaginData[i][j];
}
fftw_execute(p); //iFFT
std::vector<std::complex<double>> rowResult;
for (int j = 0; j < FFT_POINT; ++j) {
std::complex<double> value(out[j][0] / FFT_POINT, out[j][1] / FFT_POINT); // 정규화
rowResult.push_back(value);
}
fftResults.push_back(rowResult);
}
// transpose & reverse for output
std::vector<std::vector<std::complex<double>>> transposedResults = reverseTransposeData(fftResults);
// 파일에 저장
// 결과 파일을 새 디렉토리에 저장
std::ofstream realFile(directoryName + "/output_real1_iFFT.log");
std::ofstream imagFile(directoryName + "/output_imag1_iFFT.log");
for (const auto& row : transposedResults) {
for (const auto& value : row) {
realFile << value.real() << "\t";
imagFile << value.imag() << "\t";
}
realFile << "\n";
imagFile << "\n";
}
realFile.close();
imagFile.close();
// FFT 설정 및 실행
for (int period = 1; period <= 4; period *= 2) {
std::vector<std::complex<double>> combinedData = combineRows(fftResults, period);
int N = FFT_POINT * period;
int numSegments = combinedData.size() / N;
std::vector<std::vector<std::complex<double>>> segmentResults;
for (int segment = 0; segment < numSegments; segment++) {
fftw_complex* in_combined = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * N);
fftw_complex* out_combined = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * N);
fftw_plan fft_plan_combined = fftw_plan_dft_1d(N, in_combined, out_combined, FFTW_FORWARD, FFTW_ESTIMATE);
// 입력 데이터 복사
for (int i = 0; i < N; ++i) {
int index = segment * N + i;
in_combined[i][0] = combinedData[index].real();
in_combined[i][1] = combinedData[index].imag();
}
// FFT 수행
fftw_execute(fft_plan_combined);
// 결과를 세그먼트 결과 벡터에 저장
std::vector<std::complex<double>> segmentResult;
for (int i = 0; i < N; ++i) {
segmentResult.push_back(std::complex<double>(out_combined[i][0], out_combined[i][1]));
}
segmentResults.push_back(segmentResult);
// 자원 해제
fftw_destroy_plan(fft_plan_combined);
fftw_free(in_combined);
fftw_free(out_combined);
}
// 전치 및 역순 처리
auto transposedReversedResults = reverseTransposeData(segmentResults);
auto amplitudeResults = calculateAmplitude(transposedReversedResults);
// 결과를 파일에 저장
std::ofstream fftRealFile(directoryName + "/output_real1_FFT_" + std::to_string(period * 32) + "ms.log");
std::ofstream fftImagFile(directoryName + "/output_imag1_FFT_" + std::to_string(period * 32) + "ms.log");
std::ofstream fftAmpFile(directoryName + "/output_amplitude1_FFT_" + std::to_string(period * 32) + "ms.log");
for (size_t i = 0; i < transposedReversedResults.size(); ++i) {
for (size_t j = 0; j < transposedReversedResults[i].size(); ++j) {
fftRealFile << transposedReversedResults[i][j].real() << "\t";
fftImagFile << transposedReversedResults[i][j].imag() << "\t";
fftAmpFile << amplitudeResults[i][j] << "\t";
}
fftRealFile << "\n";
fftImagFile << "\n";
fftAmpFile << "\n";
}
fftRealFile.close();
fftImagFile.close();
fftAmpFile.close();
}
return 0;
}
// FFT 데이터로부터 진폭 계산
std::vector<std::vector<double>> calculateAmplitude(const std::vector<std::vector<std::complex<double>>>& fftData) {
std::vector<std::vector<double>> amplitudeData(fftData.size(), std::vector<double>(fftData[0].size()));
for (size_t i = 0; i < fftData.size(); ++i) {
for (size_t j = 0; j < fftData[i].size(); ++j) {
amplitudeData[i][j] = std::abs(fftData[i][j]);
}
}
return amplitudeData;
}
// 여러 줄의 데이터를 하나의 긴 데이터로 결합
std::vector<std::complex<double>> combineRows(const std::vector<std::vector<std::complex<double>>>& data, int period) {
std::vector<std::complex<double>> combined;
for (size_t i = 0; i < data.size(); i += period) {
for (int line = 0; line < period; ++line) {
if (i + line < data.size()) {
combined.insert(combined.end(), data[i + line].begin(), data[i + line].end());
}
}
}
return combined;
}
std::vector<std::vector<double>> calculateAmplitude(const std::vector<std::vector<double>>& realData,
const std::vector<std::vector<double>>& imaginData) {
std::vector<std::vector<double>> amplitudeData(realData.size(), std::vector<double>(realData[0].size()));
for (size_t i = 0; i < realData.size(); ++i) {
for (size_t j = 0; j < realData[i].size(); ++j) {
double realPart = realData[i][j];
double imaginaryPart = imaginData[i][j];
amplitudeData[i][j] = sqrt(realPart * realPart + imaginaryPart * imaginaryPart);
}
}
return amplitudeData;
}
std::vector<std::vector<double>> readTransposeAndReverseData(const std::string& filePath) {
std::ifstream file(filePath);
std::vector<std::vector<double>> data, transposedData;
std::string line;
while (std::getline(file, line)) {
std::stringstream ss(line);
std::string value;
std::vector<double> row;
while (std::getline(ss, value, '\t')) {
row.push_back(std::stod(value));
}
data.push_back(row);
}
size_t rows = data.size();
if (!data.empty()) {
size_t cols = data[0].size();
transposedData.resize(cols);
for (size_t i = 0; i < cols; ++i) {
transposedData[i].resize(rows);
for (size_t j = 0; j < rows; ++j) {
transposedData[i][j] = data[rows - 1 - j][i];
}
}
}
return transposedData;
}
std::vector<std::vector<std::complex<double>>> reverseTransposeData(const std::vector<std::vector<std::complex<double>>>& data) {
size_t rows = data.size();
size_t cols = data[0].size();
std::vector<std::vector<std::complex<double>>> reversedData(cols, std::vector<std::complex<double>>(rows));
for (size_t i = 0; i < rows; ++i) {
for (size_t j = 0; j < cols; ++j) {
reversedData[cols - 1 - j][i] = data[i][j]; // 전치 후 각 열을 역순으로 처리
}
}
return reversedData;
}
이 기사는 저작권자의 CC BY 4.0 라이센스를 따릅니다.